If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+30x-10=0
a = -4.9; b = 30; c = -10;
Δ = b2-4ac
Δ = 302-4·(-4.9)·(-10)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-8\sqrt{11}}{2*-4.9}=\frac{-30-8\sqrt{11}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+8\sqrt{11}}{2*-4.9}=\frac{-30+8\sqrt{11}}{-9.8} $
| 643=4•160+n | | 2x+(x-10)=500 | | -9u+15=-4u-20 | | 3x-2=3x+1.5-x+0.5 | | 6x+9=18+3x | | 3x+-4=-31 | | -4(r+6)=-49 | | -1=2q-9 | | 7v+21=-6v+34 | | 4x+11=83 | | -14-6y=14 | | (-5/6)5+x=2 | | 4.5x-3=2x | | 308(b)=4708 | | -k+7/3k=28/3 | | 36+-12x=16+8x | | (x-4)+1=13 | | 39.99x+0.45=49.99x+0.45 | | -3=13-4z | | 4x-7=x+4 | | 12-15x=6+14x | | 3(4-x)-(x-1)=9(2-x) | | n+9=7*2 | | -(3x-5)=41 | | 5(7x+7)=140 | | 30/70=10b/70 | | 2.5x=0.42857143 | | -n+7(1+6n)=7+6n | | 4(-6n-8)=n-32 | | 6-12=2x+5-7x | | -2|7x|=-14 | | 4s-6=74 |